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Abstract

Rationale and Objectives—We evaluated the role of automated quantitative computed 

tomography (CT) scan interpretation algorithm in detecting Interstitial Lung Disease (ILD) and/or 

emphysema in a sample of elderly subjects with mild lung disease.ypothesized that the 

quantification and distributions of CT attenuation values on lung CT, over a subset of Hounsfield 

Units (HU) range [−1000 HU, 0 HU], can differentiate early or mild disease from normal lung.

Materials and Methods—We compared results of quantitative spiral rapid end-exhalation 

(functional residual capacity; FRC) and end-inhalation (total lung capacity; TLC) CT scan 

analyses in 52 subjects with radiographic evidence of mild fibrotic lung disease to 17 normal 

subjects. Several CT value distributions were explored, including (i) that from the peripheral lung 

taken at TLC (with peels at 15 or 65mm), (ii) the ratio of (i) to that from the core of lung, and (iii) 

the ratio of (ii) to its FRC counterpart. We developed a fused-lasso logistic regression model that 

can automatically identify sub-intervals of [−1000 HU, 0 HU] over which a CT value distribution 

provides optimal discrimination between abnormal and normal scans.

Results—The fused-lasso logistic regression model based on (ii) with 15 mm peel identified the 

relative frequency of CT values over [−1000, −900] and that over [−450,−200] HU as a means of 

discriminating abnormal versus normal, resulting in a zero out-sample false positive rate and 

15%false negative rate of that was lowered to 12% by pooling information.
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Conclusions—We demonstrated the potential usefulness of this novel quantitative imaging 

analysis method in discriminating ILD and/or emphysema from normal lungs.
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Fused lasso; IDL; Logistic Regression; Multi-detector Volumetric CT Scanning

Interstitial Lung Disease is increasing in importance in part because of the aging population 

but also detection and/or incidence appear to be increasing. Data from the National Center 

for Health Statistics indicate that the age-adjusted mortality rate from pulmonary fibrosis has 

increased by 28.4% in men and 41.3% in women between 1992 and 2014. (1)

Inter- and intra- reader variability in interpretation of radiographs for pulmonary fibrosis and 

pneumoconiosis has been long recognized as a potential issue for screening programs, 

epidemiologic studies and medico-legal evaluations (2–4). Studies have found variable 

degrees of agreement for both parenchymal and pleural fibrosis dependent on the extent of 

abnormalities and the training and medical specialty of the chest-x-ray readers (5–8). The 

National Institute for Occupational Safety and Health (NIOSH) recommends using multiple, 

International Labour Organization radiographic pneumoconiosis classification system (ILO 

system) trained readers and median profusion scores as the preferred reconciliation protocol 

to increase accuracy and precision in PA film classification (9, 10). Clinical studies suggest 

CT imaging technology may become a gold standard for evaluation of obstructive airways 

disease (11), but the literature is relatively limited on CT's utility in quantifying and 

objectively characterizing patterns of subtle interstitial fibrosis.

High resolution CT scanning (HRCT) detects finer anatomic detail than conventional chest 

x-ray and its superior sensitivity in diagnosing ILD, as well as lower potential for inter-

reader variability, has been established in multiple studies (12–17). This study utilizes recent 

advances in CT scanning, the spiral rapid CT with multi-detector volumetric CT scanning, a 

time and cost-effective alternative to a single-detector row CT (18, 19). Quantitative data 

analysis systems such as the Apollo™ (VIDA) software (20), allow for analysis of density 

histogram characteristics by lobe and region, similar to the ILO scheme.

Our approach leverages on the fact that scarring in the periphery of the lung results in 

measurable if not dramatic changes in the range, distribution and relative frequency of HU 

summed over sets of voxels. Similarly changes in the distribution and relative frequencies of 

voxels in differing ranges of HU are useful in detecting and quantifying other lung diseases 

such as emphysema. Our approach allows identification of ranges of CT values which lead 

to the best discrimination between fibrotic and normal lung. It is well known that the 

distribution of HU distributions and frequencies could be affected by potential confounders 

including gender, age and BMI. Therefore, we investigated that these confounding effects 

can be effectively mitigated by using the ratio function of the CT value distribution over the 

periphery of the lung to that over the core, including the mediastinal structures and hilum. 

The purpose of this study was to assess the potential of this novel CT technology in 

identifying and characterizing patterns of subtle interstitial changes especially in evaluation 

of normal aging lung and ILD.
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MATERIALS AND METHODS

DATA

The data for this study consisted of lung CT images from 17 subjects with no radiographic 

and functional abnormalities and 52 subjects with ILD diagnosis confirmed by ILO review 

of CXR radiographs and functional testing. Table 1 summarizes demographic and clinical 

characteristics of the study subjects. Subjects with ILD were significantly different from 

normal subjects in the following demographics, at 5% level: predominantly male (92% vs. 

47% in the normal group), older (77.45±8.41 years old vs. 40.35±16.66), smokers (20% 

never smokers vs. 100%), presence of pleural plaques (38% vs. 0%) and majority having CT 

evidence of emphysema (88%) and bronchiectasis (83%). Table 2 contrasts several 

pulmonary test functions between the two groups. Compared with the normal subjects, 

subjects with ILD had lower total lung capacity (TLC) and residual volume (RV), but the 

differences were non-significant at 5% level. The subjects with ILD also had significantly 

lower functional vital capacity (FVC), forced expiratory volume in first second (FEV1), 

diffusion capacity for the lungs of carbon monoxide (DLCO) and FEV1/FVC, all of which, 

except FEV1/FVC, were adjusted for age, gender and body composition (and additionally 

hemoglobin level for DLCO). CT imaging was performed on a Siemens SOMATOM 

Definition FLASH (Siemens Healthcare, Erlangen, Germany). The CT scanning protocol 

consisted of obtaining multi-detector CT (MDCT) images at Total Lung Capacity (TLC) and 

at Functional Residual Capacity (FRC) supine, and one TLC prone. All results reported 

below are based on data measured supine. Unique breathing instructions were required in 

order to obtain appropriate lung volume images. The MDCT acquisition parameters 

consisted of 120 kVp, 165 mAs, rotation time 0.5 seconds, and a pitch of 1. Reconstructed 

scan data used a 0.75mm slice thickness and 0.5mm slice spacing, and standard 

reconstruction algorithm (B35) for the computer analysis. A lung reconstruction algorithm 

(B50) was selected for the supervising radiologist to interpret the image dataset and provide 

a visual assessment. The images from the MDCT chest were sent via a web-based system 

called Medical Image File Archive and Retrieval (MIFAR), University of Iowa, using 

HIPPA standard de-identification procedures and secure storage of ILO data.

The CT attenuation value of a lung voxel represents the quantitative measure of the linear 

attenuation coefficient expressed in Hounsfield Units (HU). The relative frequency 

distribution of the CT values from all voxels in a lung region of interest provides a statistical 

description of the tissue density distribution over that lung area; below, the relative 

frequency distribution of the HU is simply referred to as the CT value distribution. For each 

lung image, we separately computed the CT value distribution over the peripheral of the 

lung (peel was 15 mm or 65 mm from the border of the lung) and over the core of the lung, 

including the lung fields, mediastinal structures and hilum. Each image was also evaluated 

by a panel of three chest radiologists using a scoring sheet developed for this study for 

interstitial and airways pathology for each lobe. The Pulmonary Analysis Software Suite 

(PASS) software (21, 22) was used to automatically demarcate the mediastinal and 

intrathoracic margins for each slice of each scan. The PASS system integrates the thoracic 

cavity and mediastinal borders in order to separate lung from other thoracic structure. 

Analyses were carried out with the original CT scan images, and compared to images 
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corrected for mediastinal margins to assess the hypothesis that manual modification 

enhances the signal in the data.

Denote by dp,TLC (ν) the relative frequency of voxels in the peripheral lung image taken at 

TLC and having HU=ν, where ν ranges between −1000 and 0, in our application. Normal 

and abnormal subjects are assumed to have different patterns in their CT value distributions, 

with major differences occurring over a subset of the lung CT values range. Hence, it is 

pivotal to find a subset of the interval [−1000,0], over which some functional of dp,TLC 

furnishes a useful statistic for discriminating an abnormal scan from a normal scan. For 

conciseness, we denote the (random) function dp,TLC as V1. However, the relevant 

information in dp,TLC is likely confounded by other factors such as age, gender, BMI, etc. 

One way to adjust for the confounding factors is to compute the function V2 = dp,TLC / 

dc,TLC whose value at ν HU is the ratio dp,TLC (ν) / dc,TLC (ν), where dc,TLC (ν) is the 

corresponding relative frequency of voxels in the core lung image taken at TLC. The idea is 

that a confounding factor may affect both the peel and core CT value distributions with an 

approximately identical subject-specific multiplicative factor, so taking the ratio eliminates 

the variation due to confounding factors. Thus, the problem becomes finding some range of 

[−1000,0] over which some functional of dp,TLC /dc,TLC is a useful discriminator. However, 

the ratio dp,TLC(ν) /dc,TLC(ν) is sensitive to measurement error when the denominator is 

close to 0. The problem can be mitigated by replacing the denominator by the sum of the 

numerator and the original denominator, i.e., by applying the instantaneous transformation 

ψ(t) = t/(1 + t), resulting in the function 

. The transformation ψ effects an 

increasing, one-to-one mapping between the non-negative real line to the interval [0,1). 

Hence,  is always between 0 and 1, sharply curtailing any large fluctuations in V2. 

Similarly, we apply the transformation to V1 to obtain  to mitigate any large 

fluctuations in V1.

The functional aspect of the lung may be partially captured by changes in the CT value 

distribution from FRC to TLC. This can be measured by  denoted as V3, and 

its robustified version . The last function V4 is the ratio of the relative frequency 

of CT values across voxels in the peripheral lung image taken at TLC versus that at FRC, 

denoted by dp,TLC/dp,FRC, and its robustified version . These four functions and 

their robustified versions may potentially reveal interesting lung features from different 

perspectives, that can help us discriminate an abnormal scan from a normal scan.

In practice, there are a large but finite number of voxels in each lung image, so we compute 

the relative frequency of voxels over bins of size 10 HU. Altogether, each CT value 

distribution comprises the relative frequencies over 100 bins spanning from −1000 HU to 0 

HU. Plots of the eight functions, namely, V1, V2, V3, V4 and their robustified counterparts , 

i = 1,2,3,4, derived from lung images modified by radiologists and peel depth equal to 

15mm, are shown in Fig. 1. Fig. 1 illustrates the presence of systematic differences between 

the normal and the abnormal populations, to varying degrees. For instance, the functions 
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from the normal lungs fluctuate tightly within narrow bands for all Vs and V′s, whereas 

those from the abnormal subjects display greater fluctuations and more diverse functional 

form with greater skewness to the right (higher HU values). Moreover, plots for the robust 

functions  and , provide finer contrast between normal and abnormal lungs than V3 and 

V4.

Note that even in healthy individuals, there is loss of lung parenchyma with age. The healthy 

group is almost half the age of the ILD group. Due to age differences alone between the ILD 

and healthy groups there will be an increase in the fraction of lung tissue with a CT value 

between −1000 and −900 in the older group regardless of lung disease. In addition, males 

have larger lungs than females and will have a lower lung density at TLC. Again, this will 

impact the amount of lung tissue between −1000 HU and −900 HU, creating a bias for the 

older group, (the ILD subjects). Thus, it is pivotal to assess the efficacy of ,  and  in 

removing these confounding effects, which can be assessed per HU as follows. For each ν ∈ 

[−1000,0] and V′ equal to , i = 1,2,3,4, we regress V′ (ν) on age, gender, age-gender 

interaction and BMI, and compute the p-value, denoted by pv′ (ν), for the null hypothesis 

that the confounders are jointly non-significant, i.e. all their coefficients are zero. By 

checking the location where the p-value is less than 5%, we can locate the HUs over which 

V′ is correlated with gender, age and/or BMI. Since gender, age and BMI differ significantly 

between the two groups of subjects, the regression must be fitted per HU, separately for the 

ILD group and the normal group, in order to properly assess any remaining correlations with 

gender, age and BMI.

Figures S1 and S2 plot the p-value against ν ∈ [−1000,0] (in fact, over each of the one 

hundred 10-HU bins), separately for normal subjects and IDL subjects, for , ,  and ; 

superimposed in each figure is a horizontal line at the nominal 5% value. Because  does 

not adjust for any confounding factors, it is expected that it may be correlated with gender, 

age and/or BMI over an interval at least extending from −1000 HU to −900 HU, while if , 

 and  are successful in removing these confounding effects, then they will not be 

associated with these confounders. Fig. S1 shows that for the normal subjects,  is 

significantly correlated with gender, age and/or BMI over the very narrow interval from 

−880 HU to −870 HU, but for the ILD subjects,  is significantly correlated with gender, 

age and/or BMI over a wider interval from −940 HU to −680 HU, which is consistent with 

the aforementioned age and gender effects over the range between −1000 HU and −900 HU. 

On the contrary, Figures S1 and S2 show that  and  are uncorrelated with gender, age 

and/or BMI, within each of the two groups of subjects, across the entire range from −1000 

HU to 0 HU, except for  over the interval from −490 HU to −480 HU for the IDL group, 

and  over the interval from −820 HU to −800 HU for the normal group. Interestingly,  is 

significantly correlated with gender, age and/or BMI over the interval from −190 HU to 

−150 HU for the normal group, and also over the interval from −520 HU to −460 HU for the 

IDL group. Thus,  and  have successfully eliminated the confounding effects due to 

gender, age and BMI, whereas  has done so with partial success.
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Logistic Regression Model

We developed a logistic regression model for discriminating between normal and abnormal 

subjects. Let V stand for one of the functions (Vi, i=1,2,3,4 or , i=1,2,3,4). The idea is to 

use some functional of V, in the form of , to be a linear predictor of 

the probability of abnormality, on the logistic scale, where β0 is the intercept term and the 

coefficient function β(ν), −1000≤ν≤0 is assumed to be a sparse, piecewise constant function. 

Sparsity of a function means that it is mostly equal to a zero function, based on the belief 

that the CT value distribution of a normal scan mainly differs from that of an abnormal scan 

over a small subset of [−1000 HU, 0 HU]. As we only have a discretized version of V, in the 

form of a histogram with bin size of 10 HU, the predictor becomes . 

These considerations lead to the following logistic regression model:

(1)

where logit(p)=log{p/(1−p)} is the logistic transformation, p is the probability that the 

subject is abnormal, i.e. having lung disease, M is the total number of bins, here 100, νj the 

center of the jth bin and βj = β(νj) the coefficient. The sparse, piece-wise constancy 

assumption on β entails that the βj's are piece-wise constant and sparse.

The fused lasso estimator—Denote by β=(β0, βi, i=1,…,M)⊺ the coefficient vector. 

Assuming that the data comprise two independent random samples from the normal and 

abnormal populations, the maximum likelihood (ML) estimator of β is obtained by 

maximizing the following negative log likelihood function

(2)

where wi are known weights, yi is 1 if the ith subject is abnormal and 0 otherwise, p is given 

by Eqn. (1) with V there replaced by that of the ith subject, and n=17+52=69, the total 

sample size. The weights are generally set to be identically 1, but to mitigate the unbalanced 

group sizes (17 normal scans vs. 52 abnormal scan), we set the weights to be proportionally 

52 for each normal scan and 17 for each abnormal scan. The ML estimator is, however, 

generally neither sparse nor piece-wise constant. So, a different approach of estimation is 

desirable.

The sparsity and piecewise constancy properties, however, can be prompted by restricting 

the parameter space to the set of parameters deemed to be sparse and piece-wise constant. 

The non-sparsity of β can be measured by its L1-norm , i.e. the sparser β is the 

smaller its L1 norm is. Piecewise constancy is equivalent to stipulating that consecutive βi's 

(excluding β0) are generally identical, which amounts to requiring the sparsity of (β2 − β1, β3 

− β2,…,βM − βM−1)⊺, the first difference of β, with β0 excluded. The sparsity and piecewise 

constancy conditions may then be enforced by maximum likelihood estimation over a 

constrained parameter space defined by bounding  and  by some 

suitable upper bounds. The preceding strategy can, however, be more conveniently 
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formulated in terms of maximizing the penalized log likelihood function with the fused lasso 

penalty (23):

(3)

where λ1 and λ2 are two non-negative tuning parameters to be determined by cross-

validation; the penalized likelihood estimator is then obtained by maximizing (3). The two 

tuning parameters effectively determine the degree of sparsity and piece-wise constancy in 

the function estimate . For instance, when both tuning parameters are zero, the estimation 

becomes unconstrained maximum likelihood estimation resulting in a generally non-sparse 

estimator that is not piece-wise constant. On the other hand, for very large λ1(λ2), the β 

estimates will be mostly zero (approach a constant function with few jumps). Thus, the 

choice of the two tuning parameters is pivotal.

In all numerical work reported below, the tuning parameters are determined by 5-fold cross 

validation as follows. The data are randomly split into five blocks of approximately equal 

size, with one block serving for validating the model fit to the other four blocks of data. For 

each pair of (λ1,λ2), we obtain , the penalized estimator of β by maximizing (3) 

using data from 4 blocks, and then evaluate the (validatory) log likelihood at 

using the remaining block of data; we then compute the cross-validatory log-likelihood of 

the tuning parameter vector (λ1,λ2) by averaging the validatory log-likelihood over the 5 

blocks of data. The tuning parameters ,  are chosen by maximizing the cross-validatory 

log-likelihood. Finally,  is the fused lasso estimator. Optimization of Eqn. (3) was 

carried out by the Matlab package SLEP (Sparse Learning with Efficient Projections; (24, 

25))

Misclassification Rates

We fit the model with V as one of the eight functions, one by one, and compared them based 

on their misclassification rates. A subject is classified as abnormal if the odds of having an 

abnormal lung is not less than 1, i.e. , is ≥ 1 and otherwise classified as being 

normal. The performance of a classification scheme, as effected by model (1) with a 

particular choice for V, is characterized by its in-sample and out-sample misclassification 

rates. In-sample misclassification rates concerns the error rates when classification is done 

based on the model fit using all data. In contrast, out-sample misclassification rates attempt 

to measure the error rates of a proposed classification scheme when it is applied to the 

general population. This is done by computing the error rates with the classification of each 

subject done based on the model fit using all data except the data from the subject to be 

classified. The out-sample misclassification rates are generally more indicative of the 

accuracy of a proposed classification method in real practice. Two commonly used 

misclassification rates are false positive rate (FPR) and false negative rate (FNR). FPR 

measures the proportion of normal subjects who are misclassified as abnormal. The true 

positive rate is obtained by subtracting FNR from 1. FNR refers to the proportion of 

abnormal subjects incorrectly classified as normal. Similarly, the true negative rate is one 

minus FNR. The total false rate (TFR) is the ratio of the number of false positives and 
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negatives to the total number of subjects; it measures the overall error rate of the method. 

The in-sample and/or out-sample misclassification rates can be used as a basis for choosing 

which of the 8 functions (Vi,i=1,2,3,4 or ,i=1,2,3,4) leads to the best discriminator 

between normal and abnormal subjects.

Information Pooling

Instead of picking which of the 8 functions to use, an alternative, perhaps better approach is 

combining the information contained in a set of functions. A simple way to combine 

information occurs in the case that the (random) functions are stochastically independent 

given the disease status of the subject. In particular, Vi,i = 1,2,3,4 may be assumed to satisfy 

the preceding assumption, (and so may ) because these functions measured from a normal 

(abnormal) subject are likely independently distributed about their normal (abnormal) 

patterns. But across a mixed population of normal and abnormal subjects, these random 

functions may become dependent through the latent disease status. Denote by A the event 

that a (random) subject is abnormal and N the event that the subject is normal. Let P(A|Vi) be 

the probability that a subject is abnormal, computed based on the logistic regression model 

(1) using Vi. Similarly, P(N|Vi ) is the corresponding probability that a subject is normal. It is 

shown in the Appendix that under the further assumption that a subject has even prior odds 

of being abnormal, then the posterior odds of abnormality given all the information in Vi,i ∈ 

S, where S is a subset of {1,2,3,4}, is given by the following formula:

(4)

In other words, given all in the information contained in Vi,i∈S, the posterior odds that a 

subject is abnormal is proportional to the product of the corresponding posterior odds given 

the information in individual functions to be pooled.

Data used in this analysis were collected from a study on the implications of and association 

between radiographic evidence of interstitial lung disease and spirometry in an elderly 

population that was approved by our institutional review board. Written informed consent 

was obtained from all subjects.

RESULTS

We fit the fused lasso logistic regressions using the SLEP package for each of the eight 

functions derived from lung images acquired under several conditions, namely, whether 

image reconstruction was modified, (anatomic boundaries edited or defined by hand), or not, 

(anatomic borders read automatically). (In the models, yes modification =True (T) or no 

modification = False (F)), the peel depth was defined as either 15mm or 65mm, and the 

breathing phase defined (TLC or FRC). Hence, eight logistic regression models were fit, per 

each combination of modification and peel depth. Fig. 2 plots the fused lasso coefficient 

estimate as a function of HU, over the range from −1000 to 0, for the case of modified lung 

images with 15mm peel depth. Supplementary Fig. S3 shows the estimated coefficients for 

15mm peel depth and Modification = F. Notice that there are little differences in the 
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function fits whether or not the lung image reconstruction was modified, at 15mm peel 

depth. Figs. S4 and S5 show the corresponding function estimates, for the case of 65mm 

peel depth.

Misclassification rates were calculated for assessing the classification performance for each 

of the eight functions, and under different means of processing the lung images. Results (not 

reported), however, show that pooling information across the robustified variables, i.e. 

,i=1,2,3,4, generally yield the lowest misclassification rates. Tables 3--6 show results 

using each robustified variables. Tables 7--9 show some results using three different 

combinations of the robustified functions.

In terms of out-sample misclassification rates, the best discriminatory performance was 

achieved by pooling information in , ,  with the second best achieved by pooling 

information in , , that were derived from lung images with 15mm peel depth; the same 

performance was achieved whether or not image modification took place. This suggests the 

excellence of the automatic image reconstruction procedure, as no further improvement 

results from manual modification of anatomic margins by radiologists. However, as , 

are largely free of any confounding effects due to age, gender and/or BMI while  is only 

partially successful in removing these confounding effects, it is perhaps clinically more 

relevant to use information in ,  for classifying the subjects. Moreover, the out-sample 

error rates using ,  are about 0% FPR and 12% FNR, indicating that the proposed 

method has about 88% power of detecting a patient with lung disease at about 0% type I 

error rate.

The above analysis was done using image data from both (left and right) lungs. We have 

repeated the analysis using only one lung, but analysis with data from both lungs generally 

yielded lower error rates than using data from left (right) lung alone.

DISCUSSION

The fused-lasso function estimates, , i = 1, 2, …, 100, shown in Fig. 2 (or Fig. S3) provide 

some clues on the major difference between the normal and abnormal scans. For example 

the function estimate of the logistic regression model using  equals zero, except that it is 

approximately equal to 0.6 and 1.3 between −1000 HU to −900 HU, and −400 HU to −200 

HU, respectively, which, letting V(ν1,ν2) be the sum of V(νj) with ν1≤ν≤ν2, can be written 

as:

In other words, the log odds of abnormality is, up to an additive constant, equal to the sum 

of 0.6 times the adjusted density of lung tissues between −1000 HU and −900 HU plus 1.3 

times the adjusted density of lung tissues between −400 HU to −200 HU. Hence, the odds 

for abnormality increases with the fraction of lung tissues with CT values between −1000 

HU and −900 HU, (emphysema range), and that between −400 HU and −200 HU, (fibrosis 
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range). Thus, abnormal scans appear to have higher percent of hyperaerated lung tissue (26) 

that may be due to emphysema, and higher percent of poorly aerated lung tissue, e.g. lung 

scarring. The information contained in  may be inferred similarly:

where the term enclosed in curly brackets is equal to 

 which 

can be loosely interpreted as curvature, i.e., the second derivative of the  over the interval 

between −950 HU to −600 HU. Thus, the odds of abnormality then increases with reduced 

hyperaerated lung tissue from FRC to TLC, and it also increases with the second derivative 

of the  over the interval between −950 HU to −600 HU. Indeed, Fig. 1 shows that for 

normal scans,  is generally a concave function between −950 HU to −600 HU, whereas it 

may become a convex function for abnormal scans. The physiological basis for the 

concavity in the normal population versus the convexity in some of the subjects with 

abnormal scans is an interesting future research problem. Fig. 2 displays that the function 

estimate for the logistic regression model using  implies the following model:

Thus, the odds of abnormality increases with decreased proportion of hyperaerated lung 

tissue from FRC to TLC, increased proportion of lung tissue between −800 and −700 HU 

from FRC to TLC, and decreased proportion of lung tissue between −500 HU and −450 HU 

from FRC to TLC. Fig. 1 indicates that for normal subjects,  takes a high value between 

−1000 HU and −800 HU and then drops sharply to a lower level between −800 HU and 0 

HU. On the other hand, for abnormal scans, the drop in  is generally much more gradual. 

Hence, the estimated logistic regression model attempts to use the rate of change in the drop 

of  for discriminating between normal and abnormal scans. A caveat is in order: recall that 

we have earlier demonstrated that  contains signal from age, gender and/or BMI over the 

interval between −520 HU and −460 HU so that  derives some of its discriminatory power 

from these confounders. Studies of populations of elderly subjects with both normal and 

abnormal physiology and radiography will help refine these diagnostic models. Note that the 

function estimates for Vi, i = 1,2,3,4 are non-zero over relatively narrow ranges, as compared 

to their robustified counterparts. This indicates that robustification enhances the signal in the 

data.

This method is relatively simple, eliminates the need for between scanner calibration and 

could be applied to automated screening of interstitial disease and perhaps more importantly 

in providing an objective measure of degree of interstitial disease which could be used to 

assess disease progression and or response to treatment (27).
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We had an a priori assumption that the percent of voxels in the lung periphery in the HU 

range of −1000 to −850 should serve as an indicator of emphysema and similarly that the 

percent of voxels in the lung periphery in HU range of −450 to −200 might serve as an 

indicator of fibrosis. This prior assumption is essentially confirmed by the proposed method 

that infers the relevant HU intervals for disease detection, based on the data alone and not 

using any prior information. In contrast, earlier works focused on finding biomarkers of 

interstitial disease in terms of summary statistics of the entire CT value distributions. In 

particular, others have evaluated mean lung attenuation, skewness, and kurtosis as indicators 

of fibrosis with alteration of skew to the left decreased kurtosis or sharpness of the 

histogram peak associated with fibrosis (28), revealing strong correlations of these summary 

statistics with several physiologic and quality-of-life variables. Another approach developed 

by Yilmaz et al (29) uses the CT values to compute lobar summary statistics (averages, 

variance and inter- and intra-lobar coefficient of variation) of the tissue volume, air volume 

and fractional tissue volume. Authors demonstrated that these lobar summary statistics were 

strongly correlated with several pulmonary test functions. None of these earlier works 

attempted to develop formal tools for discriminating between abnormal and normal lungs, or 

pooling information across different phases of inspiration.

In an attempt to account for differences in BMI, penetration and possible technique 

differences the range and distribution of HU in the periphery of the lung was adjusted by the 

range of HU in the mediastinum providing an internal control for water and or soft tissue 

density. Our approach is simpler than that of Yilmaz et al who calibrated the CT attenuation 

coefficients with subject-specific references, namely, those of intra-thoracic air and air-free 

tissues. Moreover, our method makes use of the entire CT value distribution in classifying a 

lung, and quantifies the relevant range of HUs over which the functional statistics  and 

can be compared with the normal profile for detecting abnormality in the lung. An important 

feature of  and  is that based on our limited data, they are free of any confounding 

effects due to gender, age and BMI, which, if confirmed in a future large-scale study, makes 

them potentially useful tools for lung disease diagnosis.

These models confirmed the hypothesis that discrimination between normal and abnormal 

films could be improved by correcting for the ratio of increased attenuation in the peel to the 

core, (comparing peripheral to lung fields with mediastinal structures). Although the most 

rigorous model included both the end inhalation, (TLC), and end exhalation, (FRC), images, 

the model using only TLC,  above, resulted in an out-sample FPR of 0% and a 13% FNR 

suggesting the possible utility of this method as both a screening and clinical tool. 

(Equivalently, the true positive rate (TPR) is 100% and true negative rate (TNR) is 87 %.) 

We have demonstrated the proposed quantitative imaging analysis method has good 

empirical power for discriminating ILD or emphysema from normal lungs, but it is pertinent 

to conduct further validation of the proposed method with more extensive data. It is an 

interesting problem to assess the potential of adapting the proposed method to monitor 

progression of ILD or emphysema, which will be useful for disease management and 

assessment. Ultimately technology may improve the current methods of diagnosing and 

assessing the extent of interstitial radiographic abnormalities.
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Appendix

Proof of Eqn. (4)

We shall prove a slightly more general result that indicates how to modify Eqn. (4) when the 

prior odds of abnormality need not be 1. Let D be the disease status of the subject, which 

takes the value 1 if the subject is abnormal and 0 otherwise. In other words, the event A (N) 

occurs if and only if D=1 (0). Let S be a subset of {1,2,3,4} and denote by |S| the number of 

elements in S. Let p(vi,i∈S;d) be the joint probability density function of Vi,i∈S and D, 

evaluated at vi∈RM,i∈S and d∈{0,1}. (Technically, the V's and D are assumed to admit a 

probability density function that is the Radon-Nikodym derivative w.r.t. the product measure 

of the Lebesgue measure on RM×|S| and the counting measure on {0,1}.) Let p(d)=p(D=d) be 

the prior probability that D=d. The assumption that Vi,i∈S are conditionally independent 

given D implies that p(vi,i∈S|d)=Πi∈Sp(vi|d). We aim to compute p(d|vi,i∈S), the posterior 

probability that D=d given the observations. To do so, consider the product

Hence, the posterior odds of abnormality is
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which becomes , the product of the posterior odds when the prior odds 

.
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Fig. 1. 
Plots of the eight function summaries of the CT attenuation value distribution of lung 

parenchyma. Diagrams in the upper panel, from left to right, plot the realizations of 

Vi,i=1,2,3,4, with those of the normal lungs drawn as gray solid lines and the abnormal 

counterparts as dashed lines. Diagrams in the lower panel are those of ,i=1,2,3,4. These 

plots show that Vs and V′ s of the normal lungs fluctuated within narrow bands, while those 

of the abnormal lungs had greater fluctuations with higher skewness to the right. The 

preceding contrast is generally amplified in the plots of the V′ s.
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Fig. 2. 

Plot of the coefficient estimates  as a function of HU; 15mm peel depth and modification = 

T. The leftmost figure in the upper panel shows the fussed-lasso estimate of βj as a function 

of vj in model (1) with V there being V1 computed with data derived from lung images 

modified by radiologists and peel depth equal to 15mm. Note that the function estimate is 

essentially a piecewise constant function that is non-zero over a small subset of [−1000 HU, 

0 HU], as a result of the fussed-lasso penalty enforced in maximizing the objection function 

(3). Other figures in the upper panels, from left to right, are similar figures with V in (1) 

replaced by Vi,i=2,3,4 Figures in the lower panel are counterparts of ,i=1,2,3,4.
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Table 1

Demographic and clinical characteristics of study populations.

ILD Normal P-value

N 52 17

Sex 0.0002

  Male 48 (92%) 8 (47%)

  Female 4 (8%) 9 (53%)

Age, year 77.35±8.41 40.35±16.66 <0.0001

Race 0.16

  African American 0 (0%) 1 (6%)

  Caucasian 50 (96%) 16 (94%)

  Hispanic 2 (4%) 0 (0%)

BMI 28.81±5.25 25.65±3.69 0.025

Smoking history 0.00006

  Never 20 (38%) 17 (100%)

  Former 25 (48%) 0 (0%)

  Current 7 (14%) 0 (0%)

Pack-years 42.39±34.47 0±0 0.003

Plaques <0.0001

  No 32 (62%) 17 (100%)

  Yes 20 (38%) 0 (0%)

Emphysema <0.0001

  No 6 (12%) 17(100%)

  Yes 46 (88%) 0 (0%)

Bronchiectasis <0.0001

  No 9 (17%) 17(100%)

  Yes 43 (83%) 0 (0%)
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Table 2

Pulmonary function in patients with ILD compared with normal subjects.

ILD Normal P-value

N 52 17

TLC 96.41±22.20 103.41±8.52 0.21

RV 96.08±31.26 100.18±17.44 0.61

FVC 82.71±24.11 109.76±19.62 <0.0001

FEV1 78.40±24.40 112.82±20.66 <0.0001

DL CO 62.25±19.91 126.71±15.81 <0.0001

FEV1/FVC 68.88±14.14 82.94±6.43 0.0002
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Table 3

Misclassification rates based on classification using .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 3/17≈0.18 15/52≈0.29 18/69≈0.26 4/17≈0.24 15/52≈0.29 19/69≈0.28

15mm, False 3/17≈0.18 15/52≈0.29 18/69≈0.26 4/17≈0.24 15/52≈0.29 19/69≈0.28

65mm, True 3/17≈0.18 15/52≈0.29 18/69≈0.26 4/17≈0.24 16/52≈0.31 20/69≈0.29

65mm, False 4/17≈0.24 15/52≈0.29 19/69≈0.28 4/17≈0.24 16/52≈0.31 20/69≈0.29
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Table 4

Misclassification rates based on classification using .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 0/17=0 7/52≈0.13 7/69≈0.10 0/17=0 8/52≈0.15 8/69≈0.12

15mm, False 0/17=0 6/52≈0.12 6/69≈0.09 0/17=0 7/52≈0.13 7/69≈0.10

65mm, True 2/17≈0.12 9/52≈0.17 11/69≈0.16 2/17≈0.12 11/52≈0.21 13/69≈0.19

65mm, False 2/17≈0.12 9/52≈0.17 11/69≈0.16 2/17≈0.12 14/52≈0.27 16/69≈0.23

Acad Radiol. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chan et al. Page 21

Table 5

Misclassification rates based on classification using .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 2/17≈0.12 6/52≈0.12 8/69≈0.12 3/17≈0.18 7/52≈0.13 10/69≈0.14

15mm, False 2/17≈0.12 6/52≈0.12 8/69≈0.12 3/17≈0.18 7/52≈0.13 10/69≈0.14

65mm, True 1/17≈0.06 8/52≈0.15 9/69≈0.13 1/17≈0.06 9/52≈0.17 10/69≈0.14

65mm, False 1/17≈0.06 8/52≈0.15 9/69≈0.13 1/17≈0.06 8/52≈0.15 9/69≈0.13
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Table 6

Misclassification rates based on classification using .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 0/17=0 9/52≈0.17 9/69≈0.13 1/17≈0.06 10/52≈0.19 11/69≈0.16

15mm, False 0/17=0 9/52≈0.17 9/69≈0.13 1/17≈0.06 10/52≈0.19 11/69≈0.16

65mm, True 0/17=0 8/52≈0.15 8/69≈0.12 2/17≈0.12 8/52≈0.15 10/69≈0.14

65mm, False 0/17=0 8/52≈0.15 8/69≈0.12 2/17≈0.12 8/52≈0.15 10/69≈0.14
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Table 7

Misclassification rates based on classification using , ,  and .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 0/17=0 3/52≈0.06 3/69≈0.04 0/17=0 4/52≈0.08 4/69≈0.06

15mm, False 0/17=0 3/52≈0.06 3/69≈0.04 0/17=0 4/52≈0.08 4/69≈0.06

65mm, True 0/17=0 5/52≈0.10 5/69≈0.07 1/17≈0.06 6/52≈0.12 7/69≈0.10

65mm, False 0/17=0 5/52≈0.10 5/69≈0.07 1/17≈0.06 6/52≈0.12 7/69≈0.10
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Table 8

Misclassification rates based on classification using ,  and .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 0/17=0 3/52≈0.06 3/69≈0.04 0/17=0 3/52≈0.06 3/69≈0.04

15mm, False 0/17=0 3/52≈0.06 3/69≈0.04 0/17=0 3/52≈0.06 3/69≈0.04

65mm, True 0/17=0 4/52≈0.08 4/69≈0.06 1/17≈0.06 5/52≈0.10 6/69≈0.09

65mm, False 0/17=0 4/52≈0.08 4/69≈0.06 1/17≈0.06 5/52≈0.10 6/69≈0.09
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Table 9

Misclassification rates based on classification using , and .

Depth, Modification In-Sample Out-Sample

FPR FNR TFR FPR FNR TFR

15mm, True 0/17=0 4/52≈0.08 4/69≈0.06 0/17=0 6/52≈0.12 6/69≈0.09

15mm, False 0/17=0 4/52≈0.08 4/69≈0.06 0/17=0 6/52≈0.12 6/69≈0.09

65mm, True 2/17≈0.12 8/52≈0.15 10/69≈0.14 2/17≈0.12 9/52≈0.17 11/69≈0.16

65mm, False 2/17≈0.12 8/52≈0.15 10/69≈0.14 2/17≈0.12 9/52≈0.17 11/69≈0.16
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